Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 4367-4379, 2021.
Artigo em Chinês | WPRIM | ID: wpr-888135

RESUMO

The present study analyzed the effects of planting density on the development, quality, and gene transcription characte-ristics of Rehmannia glutinosa using 85-5 and J9 as materials with three planting densities of 5 000, 25 000, and 50 000 plants/Mu(1 Mu≈667 m~2). The agronomic characteristics of leaves and tuberous roots, the content of catalpol and acteoside, and the changes of gene expression were determined. The results showed that the leaf size, the diameter of tuberous root, leaf biomass, tuberous root number, and tuberous root biomass per plant at low density were significantly higher than those of medium and high densities. The content of catalpol and acteoside in leaves was higher at high density. The content of catalpol in tuberous roots was higher at low density, and the change trend was similar to that in leaves, while the content of acteoside in tuberous roots was higher at high density. Transcriptome analysis found that about 1/2 of the expansin genes could change regularly in response to density treatment, which was rela-ted to the development of tuberous roots. The change trend of the gene expression of multiple catalytic enzymes involved in the biosynthesis of catalpol and acteoside was consistent with that of their content, which was presumedly involved in the accumulation and regulation of density-responsive medicinal components. Based on the analysis of the development, medicinal components, and gene expression characteristics of R. glutinosa at different densities, this study is expected to provide an important basis for regulating the quality and yield of medicinal materials of R. glutinosa by managing the planting density.


Assuntos
Perfilação da Expressão Gênica , Folhas de Planta/genética , Raízes de Plantas/genética , Rehmannia/genética , Transcrição Gênica
2.
China Journal of Chinese Materia Medica ; (24): 2788-2797, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887951

RESUMO

NRT1 family proteins play an important roles for absorbing and transporting of nitrate in different plants. In order to identify the NRT1 family genes of Rehmannia glutinosa, this study used 11 NRT1 homologous proteins of Arabidopsis as probe sequences and aligned with the transcriptome data of R. glutinosa by using NCBI BLASTN software. Resulting there were 18 NRT1 proteins were identified in R. glutinosa. On basis of this, a series of the molecular characteristics of R. glutinosa NRT1 proteins including the conserved domains, the transmembrane structure, the subcellular location and phylogenetic features were in detail analyzed. At same time, it were systematically analyzed that the temporal and spatial expression patterns and characteristics of R. glutinosa NRT1 family genes in response to different stress factors. The results indicated that 18 R. glutinosa NRT1 family genes with the length of coding region from 1 260 bp to 1 806 bp, encoded proteins ranging from 419 to 601 amino acids, and all of they owned the domains of typical peptide transporter with 7 to 12 transmembrane domains. These R. glutinosa NRT1 family proteins mostly were found to locate on cellular plasma membrane, and belonged to the hydrophobic proteins. Furthermore, the evolutionary analysis found that the 18 R. glutinosa NRT1 protein family could be divided into two subfamilies, of which 14 NRT1 family genes might occur the positive selection, and 4 genes occur the passivation selection during the evolution process of R. glutinosa. In addition the expression analysis showed that 18 R. glutinosa NRT1 family genes have the distinct expression patterns in different tissues of R. glutinosa, and their expression levels were also obvious difference in response to various stress. These findings infield that 18 R. glutinosa NRT1 family proteins might have obviously different functional roles in nitrate transport of R. glutinosa. In conclusion, this study lays a solid theoretical foundation for clarifying the absorption and transport molecular mechanism of N element during R. glutinosa growth and development, and at same time for deeply studying the molecular function of R. glutinosa NRT1 proteins in absorption and transport of nitrate.


Assuntos
Proteínas de Transporte de Ânions , Proteínas de Membrana Transportadoras , Nitratos , Filogenia , Proteínas de Plantas/metabolismo , Rehmannia/genética , Transcriptoma
3.
China Journal of Chinese Materia Medica ; (24): 2783-2787, 2021.
Artigo em Chinês | WPRIM | ID: wpr-887950

RESUMO

Root rot was occurred widely in the production area of Rehmannia glutinosa, and which result in serious influence on the yield and quality of R. glutinosa. In the present work, a new phytopathogen was isolated from roots with root rot symptom in the production area of R. glutinosa. The colony of the pathogen growing on PDA medium was gray-black, the structure of hyphae was compact, the aerial hyphae was less developed, and the back of the colony was black. The hyphae of the pathogen were uneven in size, about 2 to 3 μm in diameter and twined with each other, the conidia of the pathogen were small, nearly round and about 1 μm in diameter. The healthy roots of R. glutinosa were inoculated with the pathogen in vitro, black-brown rot was observed at the inoculate sites after a few days' incubation. The rhizosphere soil of healthy R. glutinosa seedlings were inoculated in vivo, the leaves were wilted and the roots were black-brown rotted after several days' normal culture, the symptoms were consistent with those observed in the field. The genomic DNA of the pathogen was amplified by fungus rDNA-ITS universal primer ITS1/ITS4 and homologous analyzed, the pathogen was in a branch with Heterophoma sp., Phoma sp., P. novae-verbascicola and P. herbarum with the nuclear acid homology of 99.21% to 99.43%. The pathogen shown 97.00% to 98.02% nuclear acid homology with H. verbascicola, H. novae-verbascicola, H. poolensis, P. herbarum, H. sylvatica, H. verbascicola and H. verbasci-densiflori when amplified by the tub2 gene special primer Btub2 fd/Btub4 rd, and H. novae-verbascicola was the highest. The pathogen was in a branch with H. novae-verbascicola when amplified by the lsu gene special primer LR0 R/LR7. Based on the morphological characteristics, nucleotide sequence analysis and Koch's test results, the isolated pathogen causing root rot of R. glutinosa was identified as H. novae-verbascicola. This study is of great significance for the further theoretical research on root rot of R. glutinosa and root rot control in field.


Assuntos
DNA Ribossômico , Fungos/genética , Folhas de Planta , Rehmannia/genética , Plântula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA